1 INTRODUCTION

Corkey Wind Farm is an operational wind farm of ten wind turbines located approximately 18km north of Ballymena in Co. Antrim, Northern Ireland. This Abnormal Load Route Assessment (ALRA) provides an assessment of land based routes to the existing wind farm site for the delivery of new wind turbine components to enable repowering of the wind farm.

2 METHODOLOGY

This ALRA is a desk based study which uses publically available Ordnance Survey Northern Ireland (OSNI) mapping to conduct swept path analysis of points of constraint (PCs) on the proposed delivery route. Swept path analysis is conducted in AutoCAD using the Vehicle Tracking software and a bespoke set of delivery vehicles developed for this ALRA.

2.1 Mapping

OSNI Vector Mapping was used to conduct swept path analysis along the proposed delivery route. This mapping is two-dimensional and therefore the assessment only considers the horizontal geometry of pinch points on the route. Topographical surveys may be required in order to undertake an assessment of vertical constraints.

The OSNI mapping used during this assessment was the most up to date mapping available at the time the assessment was undertaken, however a number of locations where this appeared to be out of date were identified. At one location where recent junction improvement works have been undertaken, preliminary design drawings of a new roundabout were acquired from the Department for Infrastructure and are used in this ALRA.

In other locations inaccuracies in mapping have been identified and noted, however no alternative mapping was available. In general the extents of road and verges are noted as being inaccurate. Topographical surveys are recommended to be used as the basis for detailed design of all improvements works.

2.2 Site Visit

A site visit and route drive over was undertaken in October 2017 by an Arcus Engineer in order to verify results of an initial swept path analysis. During this drive over the locations of identified constraints were confirmed in order to verify the accuracy of the OS mapping. A number of additional points of constraint (PCs), and locations where OS mapping was out of date or inaccurate, were identified during this drive over.

2.3 Delivery Vehicle Specifications

Several candidate wind turbines are being considered for repowering the wind farm. In order to provide a robust assessment this ALRA considered the worst case wind turbine blade and the worst case tower section dimensions from the candidate turbines.

Vehicle data sheets are included in Appendix A. Dimensions of the worst case turbine components and corresponding delivery vehicle specifications are provided in the following tables.

Table 2.1: Candidate Turbine Data

<table>
<thead>
<tr>
<th>Data Used in Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade</td>
</tr>
<tr>
<td>Length 58.7m</td>
</tr>
</tbody>
</table>
Data Used in Assessment

| Tower Section | Length: 22.6m | Diameter: 4.5m |

Table 2.2: Assumed delivery vehicles for Candidate Turbine

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Trailer</td>
<td>Vehicle length – 63.5m Blade overhang – 10.5m</td>
</tr>
<tr>
<td>Tower</td>
<td>Total vehicle length – 40.3m Vehicle width - 4.5m</td>
</tr>
</tbody>
</table>

2.4 Route to Site

Two possible ports of entry were considered during this assessment, Larne and Belfast. A route to the site from each port was considered. Figure 1 included in appendix B shows the assessed route to site from each port and the location of each PC identified in the study. An overview of each route is provided below.

Route A:
- Larne Harbour;
- A8;
- A36;
- M2;
- A26;
- A44;
- Lagge Road;
- Coolkeeran Road;
- Glenbush Road;
- Altnahinch Road;
- Reservoir Road; and
- Site Entrance

Route B:
- Airport Road West;
- A2;
- M3;
- M2;
- A26;
- M2;
- A26;
- M2;
- A44;
- Lagge Road;
- Coolkeeran Road;
- Glenbush Road;
- Altnahinch Road;
- Reservoir Road; and
- Site Entrance

2.5 Assumptions

In order to keep the results of assessment as concise as possible the following assumptions have been made at each PC:

- During transit, delivery vehicles will be accompanied by an escort vehicle and a police escort if required.
- At all locations where the delivery vehicle occupies the full road width, or is required to contraflow a junction, appropriate traffic management procedures will be implemented by the escort. This will usually involve temporary closure of the road or junction whilst the vehicle passes.
- A detailed traffic management plan will be prepared prior to delivery to inform all relevant stakeholders of road closures and other procedures to be implemented during delivery.

2.6 Classification of Points of Constraint

Each PC identified in this assessment has been classified according to its risk. The criteria used to assign risk are as follows:

- 'High Risk': Where additional land is required to undertake manoeuvre.
- 'Medium Risk': Where construction works to enable vehicle overrun are required within the highway boundary. Additional land is not required; and
- 'Low Risk': Where no construction works are required. Street furniture may require removal, vegetation clearance may be required or no mitigation may be required.

3 RESULTS OF ASSESSMENT

Based on swept path analysis of all PCs identified on the proposed delivery routes, outcomes and mitigation requirements have been defined and are summarised in Table 3.1. At each PC both the wind turbine blade vehicle and tower section vehicle were tracked. Swept path analysis drawings for each PC are included in Appendix C. At each PC the vehicle shown is the one with the most severe mitigation requirements.
<table>
<thead>
<tr>
<th>Ref</th>
<th>Location</th>
<th>Assessment Outcome</th>
<th>Mitigation</th>
<th>Risk</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/01</td>
<td>Larne Harbour Roundabout</td>
<td>Trailer to overrun outside bend of roundabout within verge. Blade tip to overall roundabout outside bend and island. Trailer to overall island and conflict with road sign.</td>
<td>Load bearing surface to be laid in overrun area. Road sign to be mounted on demountable support.</td>
<td>Low</td>
<td>Sheet 1 of 21</td>
</tr>
<tr>
<td>PC/02</td>
<td>The Harbour Hwy Roundabout</td>
<td>Vehicle can negotiate junction with no conflict.</td>
<td>No further mitigation required</td>
<td>Low</td>
<td>Sheet 2 of 21</td>
</tr>
<tr>
<td>PC/03</td>
<td>Milbrook Roundabout A8</td>
<td>Blade tip to overall roundabout. Blade tip to overall roundabout of pedestrian guard rail on all/Ballymena Rd. Blade tip to overall roundabout outside bend. Trailer to overall A8 central reservation and raised roundabout central island.</td>
<td>Load bearing surfaces to be laid in overrun areas, roundabout level likely to require lowering. Blade height to be considered against pedestrian guard rail height. Road sign to be mounted on demountable support. Topographic survey recommended to confirm extent of central island hedge and wall sculpture.</td>
<td>Medium</td>
<td>Sheet 3 of 21</td>
</tr>
<tr>
<td>PC/04</td>
<td>A8/Shanes Roundabout</td>
<td>Vehicle required to contraflow roundabout. Blade tip to overall approach arm outside bend. Trailer to overall roundabout central island and conflict with road sign (north of Brownford Rd). Blade tip to overall the roundabout. Trailer to overall the roundabout. Trailer to overall roundabout central island and conflict with lamp post (south of Drumahoe Rd). Trailer to overall western pavement on Drumahoe Rd.</td>
<td>Load bearing surfaces to be laid in overrun areas. Topographic survey recommended to establish conflict with lamp post. Road sign/eastern lamp post to be removed/relocated as appropriate. Roundabout to be contraflowed.</td>
<td>Medium</td>
<td>Sheet 4 of 21</td>
</tr>
<tr>
<td>PC/05</td>
<td>A36/Shanes Hill Rd at Kilwaughter</td>
<td>Vehicle can negotiate bend with no conflict.</td>
<td>No further mitigation required</td>
<td>Low</td>
<td>Sheet 5 of 21</td>
</tr>
<tr>
<td>PC/06</td>
<td>A36/Shanes Hill Rd at Upper Ballyboly Road</td>
<td>Vehicle can negotiate bend with no conflict.</td>
<td>No further mitigation required</td>
<td>Low</td>
<td>Sheet 6 of 21</td>
</tr>
</tbody>
</table>
Assessment Outcome and Mitigation

<table>
<thead>
<tr>
<th>Ref</th>
<th>Location</th>
<th>Assessment Outcome</th>
<th>Mitigation</th>
<th>Risk</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/14</td>
<td>Ballee Roundabout (A26)</td>
<td>Blade tip to oversail, and trailer to overrun, approach arm outside bend and conflict with lighting column. Trailer to oversail approach arm inside bend. Blade tip to oversail outside of roundabout. Trailer to oversail roundabout central island. Trailer to oversail exit arm inside edge. Potential conflict with lighting column.</td>
<td>Load bearing surface to be laid in overrun area within verge. Lighting column to be relocated.</td>
<td>Medium</td>
<td>Sheet 14 of 21</td>
</tr>
<tr>
<td>PC/15</td>
<td>A26/A44 Roundabout</td>
<td>Assessment based on scaled PDF of preliminary design drawings. Roundabout to be contra-flowed. Blade tip to overrun roundabout central island. Vehicle to overrun exit arm central island and conflict with road sign. Trailer to overrun exit arm inside bend.</td>
<td>Topographical information of actual roundabout will be required to allow robust assessment. Vehicles to cross A26 central reservation. Load bearing surface to be laid in overrun area of exit arm central island, steel plating may be sufficient. Roundabout to be contraflowed. Road sign to be mounted on demountable support</td>
<td>Medium</td>
<td>Sheet 15 of 21</td>
</tr>
<tr>
<td>PC/16</td>
<td>A44/Lagge Road Junction</td>
<td>Blade tip to overrun additional land and fence on west side of A44. Trailer to overrun within highway boundary on west of A44. Trailer to overrun and oversail inside bend to south of Lagge Road into additional land. Trailer to conflict with road sign and telegraph post on inside bend.</td>
<td>Load bearing surfaces to be laid in overrun areas in additional land south of Lagge Road, post and wire fence to be relocated behind overrun area. Load bearing surface to be laid within verge to the west of Lagge Road. Permission to overrun additional land to west of A44 required. Height of fence to be checked for clearance for blade tip oversail. Road sign and telegraph post to be relocated as required.</td>
<td>High</td>
<td>Sheet 16 of 21</td>
</tr>
<tr>
<td>PC/17</td>
<td>Lagge Road/Cookeeran Road - Crossroads</td>
<td>Vehicle can negotiate junction with no conflict. Gradient change through junction could destabilise blade.</td>
<td>Dry run to investigate the effect of gradient change.</td>
<td>Low</td>
<td>Sheet 17 of 21</td>
</tr>
</tbody>
</table>

Scottish Power Renewables

March 2019

Ref

<table>
<thead>
<tr>
<th>Location</th>
<th>Assessment Outcome</th>
<th>Mitigation</th>
<th>Risk</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/18</td>
<td>Cookeeran Road/ Glenburn Road Junction</td>
<td>Mapping incomplete. Position of road edge has been estimated. Vehicle to overrun and blade tip to overrun west verge of Cookeeran Road within verge, possibly conflicting with vegetation. Vehicle to overrun and trailer to overrun inside bend within verge. Cab to overrun south verge of Glenburn Road into additional land and conflict with telegraph post and fence.</td>
<td>Updated mapping or topographical survey may be required to accurately fix position of road edge, although unlikely to change outcome of assessment. Load bearing surfaces to be laid in overrun areas, including in additional land south of Glenburn Road. Fence to be relocated behind overrun area. Telegraph posts to be relocated and signposts to be mounted on demountable supports.</td>
<td>High</td>
</tr>
<tr>
<td>PC/19</td>
<td>Glenburn Road/Altnahinch Road</td>
<td>Mapping does not correspond to site observations. Position of new fence estimated based upon site observations. Overrun beyond additional fence required on inside bend, south of Glenburn Road and conflict with telegraph pole.</td>
<td>More recent mapping or topographical survey may be required to allow accurate assessment. Landownership boundary to be established. Additional fence to be relocated and load bearing surface to be laid in overrun area. Telegraph pole to be relocated from overrun area.</td>
<td>High</td>
</tr>
<tr>
<td>PC/20</td>
<td>Altnahinch Road/ Reservoir Road</td>
<td>Mapping does not correspond to site observations, fence line to north east of Altnahinch Road appeared to be further from road edge. Outside of bend was selected as advised by client due to additional land requirements. Vehicle to significantly overrun additional land north east of Altnahinch Road. Conflict with existing public access gate. Levels of overrun area higher than road level. Ditch on north east side of Altnahinch Road to be crossed.</td>
<td>Load bearing surface to be laid in overrun area within additional land. Public access gate to be relocated. Topographical survey may be required to determine cut requirements within overrun area. Culvert on north east side of Altnahinch Road required to maintain ditch.</td>
<td>High</td>
</tr>
<tr>
<td>PC/21</td>
<td>Site Entrance Junction, Reservoir Road</td>
<td>New site entrance junction to be formed, watercourse required to be crossed. All works required for junction within red line boundary of Development.</td>
<td>Load bearing surfaces to be laid in junction and ALR overrun area. Culvert section required to maintain watercourse through junction.</td>
<td>Low</td>
</tr>
</tbody>
</table>
4 CONCLUSION

4.1 Summary

Each delivery route was assessed for the candidate wind turbine blade and tower section vehicles.

Route A from Larne identified 16 PCs (which includes 7 PCs which are common to both routes). Swept path analysis was conducted at each. Eight ‘low risk’ PCs were identified where significant works are not required. Three ‘medium risk’ PCs were identified where significant works may be required within the public road boundary. Four ‘high risk’ PCs were identified where more extensive works are required.

Route B from Belfast identified 12 PCs (which includes 7 PCs common to both routes). Three were considered ‘low risk’, five ‘medium risk’ and four ‘low risk’.

Both routes are considered viable for delivery, subject all necessary approvals being secured to undertake the improvement works.

4.2 Recommendations for Further Work

At PC/14 scaled PDF design drawings were used as a basis for assessment as no mapping was available. This will provide a general indication of required works, however more accurate as built digital data or topographic will be required to confirm the viability of this proposal.

At PC/19 the location of the fence indicated on the mapping does not correspond with site observations. Confirmation of landownership boundaries and the extent of the highway verge at this PC is required.

A topographical survey or as built drawings issued in digital format should be acquired at PC/15 to confirm this solution.

Structural surveys may need to be undertaken at structures along the route in order to establish weight limits. An abnormal indivisible loads application should be submitted to the relevant authority which will initiate consultations with all relevant parties and identify areas where further review is required.

A trial run may be considered prior to delivery once identified improvement works have been designed and built.
Arcus 22.60m x 4.5m dia. Tower Trailer
Overall Length 40.336m
Overall Width 4.500m
Overall Body Height 5.810m
Min Body Ground Clearance 0.620m
Max Track Width 2.520m
Lock to lock time 6.00s
Wall to Wall Turning Radius 9.800m

Arcus 3 Axle Platform Trailer 58.7m x 3.09m Blade
Overall Length 63.5m
Overall Width 4.200m
Overall Body Height 3.407m
Min Body Ground Clearance 0.331m
Max Track Width 2.550m
Lock to lock time 6.00s
Wall to Wall Turning Radius 9.800m

Arcus 4 Axle Platform Trailer 58.7m Blade
Overall Length 63.5m
Overall Width 4.200m
Overall Body Height 3.407m
Min Body Ground Clearance 0.331m
Max Track Width 2.550m
Lock to lock time 6.00s
Wall to Wall Turning Radius 9.800m
Corkey Windfarm Repowering
Abnormal Load Route Assessment

Figure 1
Point of Constraint Location Plan

- Site Location
- High Risk Point of Constraint
- Medium Risk Point of Constraint
- Low Risk Point of Constraint
- Delivery Route A
- Delivery Route B
- Port Location

Produced By: RL
Ref: 2606-REP-068
Checked By: SC
Date: 03/06/2019

Scale @ A3
Date: 03/06/2019
P:\Projects\2606 Corkey Windfarm Repowering\2606 Corkey Windfarm Repowering ap\2606-REP-068 Pitch Point Locations
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO DETERMINE THE IMPROVEMENTS WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARRIAGEWAY WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

FOR INFORMATION

NOTES

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO DETERMINE THE IMPROVEMENTS WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARRIAGEWAY WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
This is Crown Copyright and is reproduced with the permission of Land & Property Services under delegated authority the Controller of Her Majesty's Stationery Office, Ó Crown Copyright and database right (2019) Licence Number 100,220526076

NOTES
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL CLEARANCES OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO IDENTIFY THE IMPROVEMENT WORKS REQUIRED (INCLUDED BUT NOT LIMITED TO CARRIAGEWAY WIDENING, BOUNDARIES, DRAINAGE, SERVICES, SECURITY FACILITIES AND TRAFFIC MANAGEMENT).
4. ANALYSIS IS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. NOT REQUIRED VEHICLE MOVEMENT INFORMATION.
6. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

FOR INFORMATION
CORKKEY WINDFARM
REPOWERING
SWEPT PATH ANALYSIS
PC/02
THE HARBOUR HWY
ROUNDABOUT
SHEET 2 OF 21

LEGEND:
VEHICLE
VEHICLE WHEEL TRACK
VEHICLE OVERHANG
LOAD
LOAD OVERHANG
ADDITIONAL LAND
INDICATIVE EXTENT OF VEHICLE OVER-RUN
INDICATIVE EXTENT OF LOAD OVERHANG

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL CLEARANCES OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO IDENTIFY THE IMPROVEMENT WORKS REQUIRED (INCLUDED BUT NOT LIMITED TO CARRIAGEWAY WIDENING, BOUNDARIES, DRAINAGE, SERVICES, SECURITY FACILITIES AND TRAFFIC MANAGEMENT).
4. ANALYSIS IS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. NOT REQUIRED VEHICLE MOVEMENT INFORMATION.
6. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEEP PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER SITE INVESTIGATIONS WILL BE REQUIRED IN ORDER TO ENSURE THE PROPOSED WORKS REQUIRE NO CHANGES BUT NOT LIMITED TO CONSIDERATION OF ROADWIDTH, SURFACING, GRADING, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS WAS BASED ON 58.7M BLADE DEPLOYMENT. WORKS REQUIRED TO BE CONSIDERED.
5. ANALYSIS WAS BASED ON TOPOGRAPHICAL SURVEY TO BE CONSIDERED.

NOTES:

1. SWEEP PATH ANALYSIS HAS BEEN CONDUCTED WITH 58.7M BLADE DELIVERY VEHICLE AND TO BE CONSIDERED.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. ADDITIONAL WORKS MAY BE REQUIRED TO BE CONSIDERED.
4. ANALYSIS WAS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

LEGEND:

- VEHICLE
- VEHICLE WHEEL TRACK
- VEHICLE OVERHANG
- LOAD
- LOAD OVERHANG
- ADDITIONAL LAND
- INDETERMINATE EXTENT OF VEHICLE OVER-HANG
- INDETERMINATE EXTENT OF LOAD OVER-HANG

HEAD/WALL STRUCTURE LOCATED IN THE CENTER OF THE ROUNDABOUT

APPROXIMATE LOCATION OF PEDESTRIAN GUARDRAIL. CLEARANCE HEIGHT OF BLADE TIP ABOVE RAILING TO BE CHECKED

APPROXIMATE LOCATION OF ROUNDABOUT SIGN TO BE MOUNTED ON DEMOUNTABLE SUPPORTS

LOAD BEARING SURFACE TO BE LAID IN OVERRUN AREA

MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEEP PATH ANALYSIS.
ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
FURTHER SITE INVESTIGATIONS WILL BE REQUIRED IN ORDER TO ENSURE THE PROPOSED WORKS REQUIRE NO CHANGES BUT NOT LIMITED TO CONSIDERATION OF ROADWIDTH, SURFACING, GRADING, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
ANALYSIS WAS BASED ON 58.7M BLADE DEPLOYMENT. WORKS REQUIRED TO BE CONSIDERED.
ANALYSIS WAS BASED ON TOPOGRAPHICAL SURVEY TO BE CONSIDERED.

SWEEP PATH ANALYSIS BASED ON 58.7M BLADE DELIVERY VEHICLE AND 22.1M TOWER SECTION.
MOST SEVERE VEHICLE SHOWN ON DRAWING.
ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
1. Manual rear steering has been utilised for this swept path analysis.
2. Analysis was not conducted for vertical ground clearance of the vehicle and load.
3. Further investigation works will be required in order to verify the swept path analysis, and also to consider additional services, drainage, and traffic management.
4. Analysis was based on OSNI vector mapping; topographical survey to be undertaken and used as a basis for detailed design.

FOR INFORMATION

SCOTTISHPOWER RENEWABLES

CORKY WINDFARM REPOWERING SWEPT PATH ANALYSIS

PC/04 A/B SHANES HILL RD ROUNDBAOU SHEET 4 OF 21

NOTES:

1. Manual rear steering has been utilised for this swept path analysis.
2. Analysis was not conducted for vertical ground clearance of the vehicle and load.
3. Further investigation works will be required in order to verify the swept path analysis, and also to consider additional services, drainage, and traffic management.
4. Analysis was based on OSNI vector mapping; topographical survey to be undertaken and used as a basis for detailed design.
NOTES

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO IDENTIFY THE ENVIRONMENT WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARREIRAGE WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PIPELINE FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

FOR INFORMATION

PC/05
A36/SHANES HILL RD
AT KILWAUGHTER
SHEET 5 OF 21

CORKY WINDFARM
REPOWERING
SWEPT PATH ANALYSIS

LEGEND:

VEHICLE
VEHICLE WHEEL TRACK
VEHICLE OVERHANG
LOAD
LOAD OVERHANG
ADDITIONAL LAND
INDICATIVE EXTENT OF VEHICLE OVER-RUN
INDICATIVE EXTENT OF LOAD OVERHANG

NOTES:

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO IDENTIFY THE ENVIRONMENT WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARREIRAGE WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PIPELINE FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

7th Floor
144 West George Street
Glasgow, G2 2HG
+44 (0)141 221 9997
+44 (0)141 221 5610

Arcus Consultancy Services

Copyright © Land & Property Services of the Northern Ireland Land & Property Services

Crown Copyright and database right (2019) Licence Number 100,220526076
NOTES

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCES OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO ESTIMATE THE IMPACT FOR IMPROVEMENT WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARRIAGEWAY WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE WERE REQUIRED IN ORDER TO CONSIDER THE IMPACT ON THE PREVIOUSLY UTILISED VERTICALLY BOUNDARY OPERATIONS, INCLUDING BUT NOT LIMITED TO, ACCESSIBLE WORKS, AND INTEGRATION WITH LOCAL INFRASTRUCTURE.
4. ACCESSIBLE WORKS WERE CONSIDERED ON A SIR TO SWEPT PATH ANALYSIS AND 20.14 TOWER SECTION.
5. ANALYSIS WAS BASED ON VECTOR PROFILES, VEHICLES REQUIRED TO BE MANUALLY SWEPT PATH ADJUSTMENTS AND USED AS A BREADTH FOR DESIGN WORKS.

SWEPT PATH ANALYSIS

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE WERE REQUIRED IN ORDER TO CONSIDER THE IMPACT ON THE PREVIOUSLY UTILISED VERTICALLY BOUNDARY OPERATIONS, INCLUDING BUT NOT LIMITED TO, ACCESSIBLE WORKS, AND INTEGRATION WITH LOCAL INFRASTRUCTURE.
4. ACCESSIBLE WORKS WERE CONSIDERED ON A SIR TO SWEPT PATH ANALYSIS AND 20.14 TOWER SECTION.
5. ANALYSIS WAS BASED ON VECTOR PROFILES, VEHICLES REQUIRED TO BE MANUALLY SWEPT PATH ADJUSTMENTS AND USED AS A BREADTH FOR DESIGN WORKS.

FOR INFORMATION

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE WERE REQUIRED IN ORDER TO CONSIDER THE IMPACT ON THE PREVIOUSLY UTILISED VERTICALLY BOUNDARY OPERATIONS, INCLUDING BUT NOT LIMITED TO, ACCESSIBLE WORKS, AND INTEGRATION WITH LOCAL INFRASTRUCTURE.
4. ACCESSIBLE WORKS WERE CONSIDERED ON A SIR TO SWEPT PATH ANALYSIS AND 20.14 TOWER SECTION.
5. ANALYSIS WAS BASED ON VECTOR PROFILES, VEHICLES REQUIRED TO BE MANUALLY SWEPT PATH ADJUSTMENTS AND USED AS A BREADTH FOR DESIGN WORKS.
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED CURTAIN SIDED CLASSES OF THE VEHICLE BODY.
3. FURTHER INVESTIGATIONS WORKS WILL BE REQUIRED IN ORDER TO CONFIRM THE IMPLICATIONS WORKS REQUIRED BUT NOT LIMITED TO BACKGROUND RESIDENTIAL, SERVICE, VEHICLES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
5. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
NOTES:

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATOR WORKS WILL BE REQUIRED IN ORDER TO CONSIDER THE IMPACT OF THE VEHICLE AND LOAD ON THE HIGHWAY INFRASTRUCTURE INCLUDING HIGHWAY RESIDING, SURROUNDING, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
This document is prepared in accordance with the scope of Arcus' appointment with its client and is subject to the terms of that appointment. Arcus accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and provided.

1. Manual rear steering has been utilised for this swept path analysis.
2. Analysis was not considered vertical ground clearance of the vehicle and load.
3. Further investigation works will be required in order to identify the improvement works required, including but not limited to, carriageway widening, earthworks, services, pedestrian facilities and traffic management.
4. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.

NOTES:
1. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.

REFERENCES:
1. This drawing is to be read in conjunction with all other relevant documentation.
2. Do not scale from this drawing, use only printed dimensions.
3. All dimensions, chainages, levels and coordinates are in metres unless defined otherwise.
4. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.
5. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.
NOTES:

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.

2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.

3. FURTHER INVESTIGATORY WORKS WILL BE REQUIRED IN ORDER TO ENSURE THE IMPROVEMENT WORKS REQUIRED INCLUDES BUT NOT LIMITED TO: COMMUNICATIONS, ELECTRICAL, ELECTRICAL, SERVICES, PEDESTRIANS FACILITIES AND TRAFFIC MANAGEMENT.

4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.

5. ANALYSES BASED ON VEHICLES HAVING SIMILAR OVERHANGS TO VEHICLE TO BE IDENTIFIED AND MUST BE APPLIED TO OTHER SIMILAR VEHICLES.

6. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

SWEPT PATH ANALYSIS

PC/12

AIRPORT RD/A2

ON-SLIP

SHEET 12 OF 21
NOTES

1. MANUAL STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS WAS NOT CONSIDERED FOR VERTICAL CLEARANCES OR THE EFFECT ON THE ROAD.
3. FURTHER INVESTIGATIONS WERE REQUIRED TO CONSIDER THE INTERACTION BETWEEN THE VEHICLE AND ROAD.
4. ADJUSTMENT OF SPEEDS ON THE ROAD WAS CONSIDERED IN THE ANALYSIS.
5. ANALYSIS WAS BASED ON VEHICLE HOVERAGE, VEHICLE OVERHANG, AND VEHICLE WEIGHT.

FOR INFORMATION

1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DOCUMENTATION.
2. DO NOT SCALE FROM THIS DRAWING, USE ONLY PRINTED DIMENSIONS.
3. ALL DIMENSIONS, CHAINAGES, LEVELS, AND COORDINATES ARE IN METRES UNLESS DEFINED OTHERWISE.
4. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE PROJECT HEALTH & SAFETY FILE FOR ANY IDENTIFIED POTENTIAL RISKS.
NOTE: THIS DOCUMENT HAS BEEN PREPARED IN ACCORDANCE WITH THE SCOPE OF ARCUS’ APPOINTMENT WITH ITS CLIENT AND IS SUBJECT TO THE TERMS OF THAT APPOINTMENT. ARCUS ACCEPTS NO LIABILITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS CLIENT AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED.

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY DUE TO CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIVE WORKS WILL BE REQUIRED IN ORDER TO DETERMINE THE IMPACT OF THE SWEPT PATH ANALYSIS, ESPECIALLY IN RELATION TO HIGHWAYS, ROADSIDE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON RIGID TIRED VEHICLE AND 22.1m TOWER SECTION.
5. ADDITIONAL INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO IDENTIFY THE IMPROVEMENT WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARRIAGEWAY WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
6. ANALYSIS BASED ON OSM VEHICLE AND 22.1m TOWER SECTION.
7. ADDITIONAL INVESTIGATION WORKS TO BE REQUIRED.

FOR INFORMATION

CORKY WINDFARM
REPOWERING
SWEPT PATH ANALYSIS

PC/14
BALLE ROUNDABOUT
(A26)
SHEET 14 OF 21
1. Manual rear steering has been utilised for this swept path analysis.
2. Analysis has not considered vertical ground clearance of the vehicle and load.
3. Further investigation works will be required in order to identify the improvements works required including but not limited to camouflage, landscaping, drainage, services, pedestrian facilities and traffic management.
4. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.
1. Manual rear steering has been utilised for this swept path analysis.
2. Analysis was not constrained with vertical ground clearance of the vehicle and load.
3. Further investigations would be required in order to consider the appropriate works required but not limited to carryway widening, surfacing, drainage, services, pedestrian facilities and traffic management.
4. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.
5. Analysis based on 58.7m blade delivery vehicle and 22.1m tower section.

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS WAS NOT CONSTRAINED WITH VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WOULD BE REQUIRED IN ORDER TO CONSIDER THE APPROPRIATE WORKS REQUIRED BUT NOT LIMITED TO CARRIAGEWAY WIDENING, SURFACING, DRAINAGE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
VERTICAL ASSESSMENT TO BE UNDERTAKEN. SEVERE GRADIENT CHANGE NOTED THROUGH JUNCTION.

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO IDENTIFY THE IMPROVEMENT WORKS REQUIRED INCLUDING BUT NOT LIMITED TO CARRIAGEWAY WIDENING, EARTHWORKS, DRAINAGE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION. MOST SEVERE VEHICLE SHOWN ON DRAWING.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

LEGEND:
- VEHICLE
- VEHICLE WHEEL TRACK
- VEHICLE OVERHANG
- LOAD
- LOAD OVERHANG
- ADDITIONAL LAND
- INDICATIVE EXTENT OF VEHICLE OVER-RUN
- INDICATIVE EXTENT OF LOAD OVERHANG

This drawing is to be used only for the purpose of issue that it was issued for and is subject to amendment.

This is Crown Copyright and is reproduced with the permission of Land & Property Services under delegated authority the Controller of Her Majesty's Stationery Office, © Crown Copyright and database right (2019) Licence Number 100,220526076

1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DOCUMENTATION.
2. DO NOT SCALE FROM THIS DRAWING, USE ONLY PRINTED DIMENSIONS.
3. ALL DIMENSIONS, CHAINAGES, LEVELS AND COORDINATES ARE IN METRES UNLESS DEFINED OTHERWISE.
4. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE PROJECT HEALTH & SAFETY FILE FOR ANY IDENTIFIED POTENTIAL RISKS.

FOR INFORMATION
2606-DR-ALR-0017

12/03/2019 11:30:30
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEEP PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY DUE TO LACK OF AVAILABILITY OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE NEEDED TO IDENTIFY THE IMPACT OF IMPROVEMENT WORKS REQUIRING INCLUDING BUT NOT LIMITED TO CONVEYOR BELTS, CARRIAGEWAYS, GROUNDWORKS, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEEP PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY DUE TO LACK OF AVAILABILITY OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE NEEDED TO IDENTIFY THE IMPACT OF IMPROVEMENT WORKS REQUIRING INCLUDING BUT NOT LIMITED TO CONVEYOR BELTS, CARRIAGEWAYS, GROUNDWORKS, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEEP PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY DUE TO LACK OF AVAILABILITY OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE NEEDED TO IDENTIFY THE IMPACT OF IMPROVEMENT WORKS REQUIRING INCLUDING BUT NOT LIMITED TO CONVEYOR BELTS, CARRIAGEWAYS, GROUNDWORKS, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEEP PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY DUE TO LACK OF AVAILABILITY OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIONS WERE NEEDED TO IDENTIFY THE IMPACT OF IMPROVEMENT WORKS REQUIRING INCLUDING BUT NOT LIMITED TO CONVEYOR BELTS, CARRIAGEWAYS, GROUNDWORKS, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
LOAD BEARING SURFACE TO BE LAYED IN OVERRUN AREA

DOTTED LINE INDICATES APPROXIMATE LOCATION OF NEW FENCELINE MEASURED DURING SITE VISIT. DOES NOT MATCH FENCELINE INDICATED ON MAPPING.

THIRD PARTY LAND TO BE OVERSAILED. FENCELINE TO BE RELOCATED AND VEGETATION CLEARED.

THIRD PARTY LAND REQUIREMENT 124m²

APPROXIMATE LOCATION OF TELEGRAPH POLE TO BE RELOCATED

NOTE:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO DETERMINE THE IMPACT ON WIND Farm INSTALLATION (BESIDES ROADWORKS). SCHERING WALLS, SERVICES, PRESENCE OF LULU AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

LEGEND:

- VEHICLE
- VEHICLE WHEEL TRACK
- VEHICLE OVERHANG
- LOAD
- LOAD OVERHANG
- ADDITIONAL LAND
- INDICATIVE EXTENT OF VEHICLE OVERRUN
- INDICATIVE EXTENT OF LOAD OVERRUN

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO DETERMINE THE IMPACT ON WIND Farm INSTALLATION (BESIDES ROADWORKS). SCHERING WALLS, SERVICES, PRESENCE OF LULU AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
5. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
1. MANUAL REAR STEERING HAS BEEN UTILIZED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY AND WAS CONSIDERED FOR THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIVE WORKS WILL BE REQUIRED IN ORDER TO ENSURE THE IMPROVEMENTS WERE REQUIRED BUT NOT LIMITED TO COMMISSARY, ACCESSIBLE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
5. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILIZED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS WAS NOT CONDUCTED VERTICALLY AND WAS CONSIDERED FOR THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATIVE WORKS WILL BE REQUIRED IN ORDER TO ENSURE THE IMPROVEMENTS WERE REQUIRED BUT NOT LIMITED TO COMMISSARY, ACCESSIBLE, SERVICES, PEDESTRIAN FACILITIES AND TRAFFIC MANAGEMENT.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.
5. ANALYSIS BASED ON 58.7m BLADE DELIVERY VEHICLE AND 22.1m TOWER SECTION.
DEF
UND
WATERCOURSE
PERMANENT ACCESS FIRST 40m TO BE 6.5m WIDTH TO ALLOW OPPOSING HGV PASSAGE.
FULL DEPTH CARRIAGWAY TO BE CONSTRUCTED FOR FIRST 10m MINIMUM AND FINISHED WITH BITUMINOUS MATERIAL (BLACK TOP)

NOTES:
1. MANUAL REAR STEERING HAS BEEN UTILISED FOR THIS SWEPT PATH ANALYSIS.
2. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCES OF THE VEHICLE AND LOAD.
3. FURTHER INVESTIGATION WORKS WILL BE REQUIRED IN ORDER TO CONSIDER THE IMPACT OF THIRD PARTY WORKS ON EXISTING BUILDINGS AND THEIR INFRASTRUCTURE.
4. ANALYSIS BASED ON OSNI VECTOR MAPPING. WHERE REQUIRED TOPOGRAPHICAL SURVEY TO BE UNDERTAKEN AND USED AS A BASIS FOR DETAILED DESIGN.

FOR INFORMATION
SCOTTISHPOWER RENEWABLES
PC/21
SITE ENTRANCE JUNCTION
SHEET 21 OF 21

CORKEY WINDFARM REPPOWERING SWEPT PATH ANALYSIS

VEHICLE
VEHICLE WHEEL TRACK
VEHICLE OVERHANG
LOAD
LOAD OVERHANG
ADDITIONAL LAND
INDICATIVE EXTENT OF VEHICLE OVER-RUN
INDICATIVE EXTENT OF LOAD OVERHANG

Safety, Health and Environmental Information Box
This drawing is to be used only for the purpose of issue that it was issued for and is subject to amendment.

This is Crown Copyright and is reproduced with the permission of Land & Property Services under delegated authority the Controller of Her Majesty's Stationery Office, Ó Crown Copyright and database right (2019) Licence Number 100,220,526,076

1.250

2606-DR-ALR-0021

16/05/19

TAT

For Information

+44 (0)141 221 9997
+44 (0)141 221 5610

7th Floor
144 West George Street
Glasgow, G2 2HG

Arcus Consultancy Services

© Arcus Consulting Services

An analysis of swept path has been undertaken to identify the impact of the wind turbine tower sections and blade sections on the site entrance junction.

Swept Path Analysis

1. Manual rear steering has been utilised for swept path analysis.
2. Analysis has not considered vertical ground clearances of the vehicle and load.
3. Further investigation works will be required in order to consider the impact of third party works on existing buildings and their infrastructure.
4. Analysis based on OSNI vector mapping. Where required topographical survey to be undertaken and used as a basis for detailed design.